

# COOL DH Høje Taastrup Business cases and Demonstrations

Reto Michael Hummelshøj, Leading Project Manager, COWI and Steen Gravenslund Olesen, Project Manager - COWI





## COOL DH – in Høje Taastrup

#### Høje-Taastrup - Østerby (Denmark)

- > Area with *renovated/existing buildings*
- > New LTDH network (85/50=>55/30°C )using PE-RT pipes
- > Supplied from CITY2 shopping center's cooling system
- Heat recovery also from bank (data center)

#### **Lund - Brunnshög (Sweden)**

- > New district under development for 40.000 people
- > New LTDH network (65/35°C) with new PE-RT pipes











## Høje-Taastrup C -> Østerby

#### **Key Questions**

- How to design local low temperature DH grids?
- How to integrate local renewables prosumers?
- Business model?









## City2 as prosumer

#### Background:

- Large PV installation from 2014 combined with successful EE strategy has led to excess of local electricity
- 10 years favorable feed-in tariff for local production decreases yearly and runs out in 2024

#### Business model:

DH Company approached CITY 2 with a proposition to co-produce and deliver heating & cooling based on the excess PV power, and to rent a room in the basement of the premises and to take over the ownership (BOO) and operate it as flexsumer in interplay with parallel local energy sources



16,200 m<sup>2</sup> PV on roof (2.1 MW)







#### **Benefits**

- Co-production of 1.3 MW heating and 1.0 MW cooling (+1.5 MW backup from DC)
- Production connected to district cooling network and district heating system i.e.
  - Not limited by demand internally of City2 and Østerby district
  - External cooling grid is a resource for heat co-production
  - => More operation hours possible
- Electricity at <u>low cost</u> from PV
- Existing cooling machine reused i.e. <u>lower investment</u>





## Supplies from CITY2 shopping mall in Høje Taastrup



District Heating Networks LTDH 60-70/45°C Høje Taastrup C

LTDH 55/30°C Østerby District

District Cooling Network

6/12°C summer 10/15°C spring & fall incl. CITY2







## Interlinking Energy Centrals and Consumers is important









## Business Model CITY2: Co-production of cooling and heating, **Selling both heat and cooling**

| Type of installation                                    | Prosumer Heat Pump                                       |
|---------------------------------------------------------|----------------------------------------------------------|
| Installation location                                   | CITY2                                                    |
| Capacity (Heat Pump)                                    | 1341 kW heat +<br>990 kW cooling                         |
| Efficiency, Heat Pump COP <sub>system</sub> incl. pumps | (1341+990)/(268.1+176.5) = 5.24<br>(design at 100% load) |

Cost of electricity: (confidential)

Cost of sold cooling in average: (confidential)

Cost of sold heat in average: 0.056 €/kWh

Total cost for the demo installation: 1.14 mio. €

Simple pay-back period 8-10 years

COP primary energy: 2.5









## Business Model, Bank building, LTDH 60°C

- Utility invest in heat pump, pay electricity and get cooling energy for free
- Bank provides space & use free cooling 9/14°C continuously 5.000-6.500 max hours p.a.

| Type of installation                         | Prosumer Heat Pump                           |
|----------------------------------------------|----------------------------------------------|
| Installation location                        | Nordea Bank                                  |
| Capacity (Heat Pump)                         | 1920 kW heat +                               |
|                                              | 1500 kW cooling                              |
| Efficiency, Heat Pump<br>COP <sub>heat</sub> | 3.67 in practice incl. pumps and ancillaries |

Cost of sold heat in average: 0.056 €/kWh

Total cost for the demo installation: 1.61 mio. €

COP primary energy: 3.11











### Distribution side

#### **Implementation** in Østerby district:

- > Heat Pump connected to the LTDH district
- > Aiming at ZERO loss transmission pipes!











## COOL DH ("zero loss pipe")

Heat recovery pipes ( => zero-loss pipe)

 Based on HEAT2 simulations (heat transfer) at 3/7°C brine temp

| $\sim$ $\sim$ $\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$ |  |
|------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                              |  |
|                                                                                                                              |  |
| 111 4:4                                                                                                                      |  |
| 2:2                                                                                                                          |  |
|                                                                                                                              |  |
|                                                                                                                              |  |
| 3:3                                                                                                                          |  |
|                                                                                                                              |  |
|                                                                                                                              |  |
|                                                                                                                              |  |
|                                                                                                                              |  |

| Total recovered energy [kWh/m/yr] | 167.4 |
|-----------------------------------|-------|
| Heat from the DH pipe [kWh/yr/m]  | 75.7  |
| Heat from the soil [kWh/yr/m]     | 91.7  |









## Østerby District

Approx. 36.000 m<sup>2</sup> building stock from the 80'ties

- 158 terraced houses
- A public kindergarten
- Social housing company

#### **District heating network**

- +35 years old
- One main heat exchanger and local grid

#### Organization (6 groups)

- Kindergarten
- Social housing
- 4 housing associations















### How to convince the locals to change to LTDH?

House tenants barely know what keep them warm in winter and how they get hot water!

- Necessary to make a detailed action plan to answer the questions
- > Find decision triggers e.g. limited lifespan of existing pipes
- Know economic consequence for each customer
- Make pilot installations and get local ambassadors on your side

#### Tight counselling collaboration between









## COOL DH approach in Østerby

#### Before

- Building partly retrofitted (e.g. low energy windows)
- Oversized self owned grid with >35% local grid loss, 85/50°C
- Old pipes below houses with need for replacement

#### After

- New pipes now owned by utility grid loss <15% grid loss, 53/30°C at consumer</li>
- New local DH units with no DHW circulation => ensures low DH return temp.
- Business model:
  - Partly financed by the bill through utility (units paid by fixed yearly subscription over 20 years)
  - Grid and maintenance taken over by utility
  - No further risks for consumer
  - Overall a +20% reduced cost for the consumers







## Consumer Key Figures (DKK incl. VAT)

#### Traditional DH upgrade (20 years)

DH Lifetime extension: 12.0 m.DKK

• DH Units: 1.2 m.DKK

DH consumption/costs: 1.0 m.DKK/y

• CAPEX & OPEX: 2.2 m.DKK/y

corresponding to 13.8 t.DKK/dwelling/y

NEW LT (COOL) DH upgrade (20 years)

• NEW LT DH system: 6.2 m.DKK

LT DH Units (subscription): 450 t.DKK/y

DH consumption/costs: 900 t.DKK/y

CAPEX & OPEX: 1.7 m.DKK/y

corresponding to 10.9 t.DKK/dwelling/y

 Annual savings: 0.5 m.DKK/y (~20%) corresponding to 2.9 t.DKK/dwelling/y







## Consumer Key Figures (EUR incl. VAT)

#### Traditional DH upgrade (20 years)

DH Lifetime extension: 1.61 m.EUR

• DH Units: 0.16 m.EUR

DH consumption/costs: 0.13 m.EUR/y

CAPEX & OPEX: 0.3 m.EUR/y

corresponding to 1.85 t.EUR/dwelling/y

NEW LT (COOL) DH upgrade (20 years)

• NEW LT DH system: 0.83 m.EUR

LT DH Units (subscription): 60 t.EUR/y

DH consumption/costs: 120 t.EUR/y

• CAPEX & OPEX: 0.23 m.EUR/y corresponding to 1.46 t.EUR/dwelling/y

Annual savings: 70 t.EUR/y (~20%)
corresponding to 390 EUR/dwelling/y





## Hest Loss reduction in Østerby LTDH

- Existing network (high heat losses)
- Better insulation/twin pipes
- Hydraulic optimization (smaller pipes)
- Length optimisation
- Aim:
  - Reduced heat loss in the network
  - Optimal operation









